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Abstract. We calculate the intrachain bead-to-bead square distance of a real polymer chain, 
close to the critical dimensionality d = 4. From this we obtain the mean-square radius of 
gyration (S’) of the polymer as a function of the molecular weight N of the chain and the 
excluded volume parameter U. A proportionality relationship between (S’ )  and the mean 
square end-to-end distance (R’) of the coil, previously suggested by enumerations of 
self-avoiding walks on lattices, is shown to be true. An estimate of the universal ratio 
(s’)/(R’) is given. 

1. Introduction 

The mean radius of gyration ( S 2 )  of a polymer coil (Yamakawa 1971) is defined as the 
average square distance of the chain segments from the centre of the mass of the chain. 
It characterises the size and shape of the polymer and thus it may be obtained from 
hydrodynamic measurements. In the limit of small scattering angles it is proportional to 
the slope of the structure factor with respect to the square of the wavenumber. 
Therefore it is also directly observable in scattering experiments of dilute polymer 
solutions. 

For an ideal chain, the various statistical averages can be calculated relatively easily 
(Yamakawa 1971). Both the average radius of gyration ( S 2 )  and the average end-to- 
end square distance (R’) are found to be proportional to the molecular weight N and 
their constant ratio is equal to 1/6,  

(S’)/(R’) = 1 /6  (ideal chain). 

When a real chain is considered though, the excluded volume interactions between all 
pairs of beads increase the complexity of the problem enormously. In a good solvent 
these long-range interactions are repulsive and the coil expands (Edwards 1965). The 
dependence of (S’) and (R’) on the molecular weight N, in the limit of N + CO, becomes 
of the power law variety, 

( S 2 )  - N’”‘ (1.2a) 

( R 2 )  - N2“.  (1.2b) 

A question which arises immediately is whether Y ’  and Y are identical and if a 
proportionality relationship between (S’ )  and (R’), analogous to equation (1 -1) is also 
valid for the non-ideal case. 

Classical perturbation expansions give a negative answer to the question of propor- 
tionality. Close to the 8 point the binary cluster integral U takes small values and the 
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parameter z = ( 3 / 2 ~ ) ~ / ~ u N ~ / ~ ( d  = 3) is treated as the small perturbation parameter. 
The first-order perturbation results in the three-dimensional space (Fixman 1955) are 

(S’)  = (N/6)[1+ (134/105)z] ( 1 . 3 ~ )  

(R’) = N[1+  (4/3)z] (1.3b) 

from which the ratio ( S 2 ) / ( R 2 )  comes out to depend on the molecular weight N. On the 
other hand, indications of a proportionality relationship between (S’ )  and ( R 2 )  are 
found by means of enumerations of self-avoiding walks confined on lattices (Domb and 
Hioe 1969, Lax et a1 1978). From extrapolations to large values of N it is concluded by 
these methods that v and U‘ are the same, showing in this way that ( S 2 ) / ( R 2 )  is 
independent of N. 

Classical perturbation theory cannot properly describe the thermodynamic limit 
since the assumption that z - UN’/’ is small fails at large N. Recent studies in the field 
of statistical mechanics have shown that an interesting parameter in the study of 
polymers is the dimensionality d of the space (de Gennes 1972, Wilson and Kogut 
1974). The dimensionalityfour is a critical one. For dimensionalities above d = 4, even 
chains with large excluded volume behave ideally. This makes the solution for d > 4 to 
represent a good choice as a zeroth-order exact solution. Using then E = 4 - d as the 
small parameter of a perturbation scheme, we approach the real world of dimen- 
sionalities smaller than four bringing in evenly the non-idealities of the problem. 

In a recent article (Kosmas 1981) we have applied these concepts to study the 
properties of a polymer coil, associated with the end-to-end distribution function of the 
chain. Following the ideas of Renormalisation Group (RG) theory (Wilson and Kogut 
1974) we have reached the meaning of the fixed point in a simple perturbation scheme. 
RG theory postulates that successive eliminations of the degrees of freedom of a system 
close to a critical point, keeps the functional form of the free energy the same. In 
polymers the Boltzmann factor is an exponential function in the excluded volume 
parameter U (see equations (2.1) and (2.2)). Thus it has also to be an exponential 
function in U *  the fixed-point value of U, after the elimination of all degrees of freedom. 
We solved the problem in a perturbation scheme and by requiring the expansion series 
to fit into an exponential function, we recovered the fixed-point values U *  = 0, ~ / 1 6 .  
These values give the same exponents with those coming from RG theory in the limit 

In the present work we study the mean-square radius of gyration related to the 
general, two segment, distribution function of the polymer chain (Witten and Schafer 
1978). In 8 2  we derive an expression for the mean average bead-to-bead square 
distance which we use in § 3 to calculate the mean radius of gyration. The interesting 
ratio ( S 2 ) / ( R 2 )  on which the calculation of (R’) from the experimental quantity (S’ )  is 
based is also estimated close to d = 4 in 8 3. 

~ = 4 - d + 0 .  

2. The mean bead-to-bead square distance 

In the Gaussian model with excluded volume the distribution function P({r i } )  for the N 
beads of the polymer chain, assumed to be located at the points ri, i = 1, 2, . . . , N, is 
given (Yamakawa 1971) by: 
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Here c is a normalisation constant and B = l /kT.  The effective segment length I does 
not affect the present analysis and is taken for simplicity to be equal to 1. The mean 
potential V(ri - ri) between non-bonded pairs of beads is approximated as usual by a 
delta function pseudopotential, 

(2.2) d (B/2) V(ri - rj) = US (ri - rj), 

where the excluded volume parameter U is the binary cluster integral. 

(Domb and Hioe 1969) as 
The average radius of gyration can be expressed in terms of the intrachain distances 

(2.3) 
l # k  

where ((rl - rk)2) is the mean-square distance between the beads I and k. This average is 
defined by means of the distribution function, equation (2.1) as 

If we make use of the approximation, equation (2.2) in equation (2.1) and expand the 
exponential we take up to first order in U that 

i i j  

x [ 5 exp[ - t1 (3/2)(ri - ri+J2} i = l  3 dri]-']. 
i = l  
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The first term in equation (2.5) is the mean bead-to-bead square distance for an ideal 
chain and is equal to the length of the segment ( I  - k) while the U term represents the 
contribution from chains with a loop coming from the delta function constraint. 

In the U term of equation (2.5), the position and the length of the loop is determined 
by the lengths i and j .  The relative magnitude of the lengths i and j with respect to the 
lengths k and 1 (the beginning and the end of the segment under study) determines the 
position of the loop with respect to the k, 1 segment and hence the final form of the 
corresponding Gaussian integrals. In a diagrammatic language we can represent the 
intrachain distance as: 

I 

(2.6) 

The circle in these diagrams represents the i, j loop and the k and 1 points the beginning 
and the end of the segment. In the first and the last diagrams the i, j loop lies outside the 

k, 1 segment, while in the diagram it lies inside the segment. In the diagram 

the segment lies inside the loop and in the rest of the diagrams the loop and the 

segment have only some of their parts in common. 
To evaluate these diagrams we have to go to the corresponding expression of the U 

term of equation (2.5) where the integration over all r’s has to be performed. As a first 
step we integrate over r’s representing the positions of beads between special points. 
The special points for the first-order diagrams are the end of the chain with a position 
vector RN, the kth and lth beads at R k  and RI respectively, and the i, j junction at R. 
These integrations are over Gaussian functions and are trivial. After this part is done 
we are left with Gaussian probabilities for the several portions of the chain whose 
positions are defined by the vectors 0, R,  Rk, RI and RN. Completion of the 
integrations over capital R’s  gives the final form of the diagrams. Two examples will be 

T K  

given for the diagrams 7 k l  and % For the diagram +,before doing the 

integration over capital R’s  we take that: 
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x exp[-3(Rk - R)’/2(k - j )1[3/2dl-  k)ld” 

xexp[-3(R1 -Rk)’/2(1-k)][3/2rr(N- 

xeXp[ -3 (R~-R1) ’ /2 (N- - ) ] (1 -k ) .  (2.7) 
The R integrations are over all space and are facilitated by making the linear 
transformation: 

R N + R N - R I ,  Rl+RI-Rk, Rk+Rk-R,  R+R. (2.8) 
The new variables are also integrated over all space. The result is -#-=O. Forthe 
diagram-+ we take: 

x exp[-3(Rk - R)‘/2(k - i ) ] [3/2dj  - k)]”” 

x exp[-3(Rk - R)2/2(j - k)1[3/2dZ - j ) l d / *  exp[-3(R1- R)’/2(1 -ill 
X [ 3 / 2 r ( N  - l)ld/’ eXp[-3(R~ -R1)’/2(N - 1)](1- k). (2.9) 

RN -* RN-RI ,  Rk -* Rk -R, RI + Rl-R, R -* R (2.10) 

(Ri -Rk)’ = (RI -R)’+ (Rk -R)’- ~ ( R I  -R)(Rk -R). (2.11) 

Next we change into the new variables 

and we make use of the identity 

The integrations over Gaussian functions are trivial and they give finally that 

j ) d / 2 + 1 .  (2.12) = -- 0‘ - &)’/(j - I 

k 

Similarly the forms for the rest of the diagrams can be found. All of them are collected 
in table 1. 
The next thing in order, according to equation (2.6), is to find the summations over i and 
j for each diagram. We facilitate this by converting these summations into integrations. 
Examples for d = 4 are: 

is1 j - k  w 
i # f  k 

k I  I k 

= Jl di I, dj[-(j - k)’/(j - i)3] = - I, dj(j - k)’ J di(j - i)-3 
1 
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=-kln( l /k)+k(l  -k)/21, (2.13) 

k N  k 

=-( l -k) ' /  di[ dj(j-i)-3=[(I-k)2/2] 5 di[(N-i)-2-(1-i)-2] 
1 /  1 

= [ ( I - k ) ' / 2 ] [ ( N -  k)-'-N-'-(l - k ) - ' + l - l ] .  (2.14) 

Table 1. First-order diagrams necessary for the evaluation of intrachain distances of a 
polymer chain. 

1 (i - k)' ( I  - k)' 0 =-- r=-p 
I &  

The rest i and j' summations can be evaluated in a similar way. If we put the results in 
the same order as in equation (2.6), we take that: 

( (r /  -rk)')  = ( I -  k ) -  u[O+[-kln(l/k)+ k( l -  k)/21) 

+{[(I-k)'/2][(N-k)-' - N - l - ( l - k ) - l +  1-71 
+ [ - k l n ( l / k ) + k ( l  -k)/21]+[-2(1- k)ln(l-k)+2(1 -k)]  

+ { ( N -  l)ln[(N- l ) / ( N - k ) ] + ( N - 1 ) ( I - k ) / 2 ( N - k ) }  

+ { [ ( 1 - k ) 2 / 2 ] [ ( N - k ) - 2 - N - 1 - ( l - k ) - 1 + I - 1 ] }  

+ { ( N -  I)ln[(N-- l ) / ( N  - k ) ] +  ( N  - l ) (1  -k ) /2 (N-  k ) } + O j  

= (1 - k )  - ~{-2kln( l /k)  - 2(N - l)ln[(N - k ) / W  - 111 

- 2 ( 1 - k ) l n ( l - k ) - ( l - k ) ' / N + 3 ( 1 - k ) } ,  l > k .  (2.15) 

The term of equation (2.15), first order in U, includes both positive and negative 
parts. A specific combination of the indices 1 and k is possible for which the U term 
vanishes. For these values of 1 and k the portion of the chain starting at the length k and 
ending at the length 1 behaves ideally. This condition for intrasegmental ideality does 
not depend only on the length ( I  - k)  of the segment but also on its position along the 
chain. After this, a 'blob' picture (Farnoux et a1 1978, Weill and des Cloizeaux 1979) 
according to which there are portions of the chain of certain lengths (blobs) with ideal 
behaviour regardless of their position on the chain, has to be improved. 
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The diagram -+ has both beads i and j coming from inside the segment (k, 1). 

This is the only diagram with this property and represents intrasegmental excluded 
volume effects. When k + 0 and 1 + N all the rest diagrams give negligible contributions 

and the diagram recovers the first-order result of the mean end-to-end square 

distance of the polymer coil. All the remaining diagrams involve beads from outside the 
(k, I )  segment. A useful observation can be made regarding this partition. We will see 
that the largest contribution for the evaluation of ( S 2 )  comes from the intrasegmental 

diagram v w h i l e  the remaining diagrams can only alter the proportionality 

constants in the limit of large N’s. 

k 1  

k i  

3. The mean radius of gyration 

In order to evaluate the mean radius of gyration (S’ )  up to first order in U we combine 
equations (2.3) and (2.6) to obtain 

The results of i and j summations have been given in equation (2.15). According to the 
expression (3.1) the 1 and k summations are in order. We convert the summations into 
integrations and we take for the zeroth-order term 

N N-l  N c (1  - k)  = jlN-’ dk dl(1- k)  = N3/6,  N + m .  (3.2) 
k = l  i = k + l  

The diagrams 

four equivalent diagrams, two of them of the form 
form ‘7- goes as follows: 

and % give zero contributions while the calculation for the 

and the other two of the 
k 

k 

1 

N - 1  

k = l  l = k + l  i = k  j = 1  
k 

= J, dk J dl(-k2/21 + k/2- k In 1 + k In k)  
k 

N N 

= -(1/6) [Nd!1’+(1/2) 

+ I l N d k l n k ( N - k ) k  

dk(N-k)- (1 /2)  I dl  In 11’ 
1 1 1 

= -( 1 / 1 8)N3, N + W .  (3 .3a )  
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In a similar way the remaining diagrams give: 

N - 1  N k N 

k = l  I = k + l  i = l  j = l  

N - 1  N N k 
= 1 C a = - N 3 / 7 2 ,  

k = l  l = k + l  i = l j = l  I k 

N - 1  N 1 I 
1 v = - ( N 3 / 3 ) I n N + ( 1 1 / 1 8 ) N 3 .  

k = l  l = k + l  i = k  j = k  
i Z i  

(3.3b) 

(3 .3c)  

Using these results in equation ( 3 . 1 )  we obtain an expression for the mean radius of 
gyration, 

( S ’ ) =  (N/6) [1+2u( ln  N - 1 3 / 1 2 ) ] .  (3.4) 

When U = 0 equation (3.4) recovers of course the ideal result. The mean square 
distance (R’) up to first order in U ,  can be calculated (Kosmas 1981) as the contribution 

of the intrasegmental diagram -+ at the limit k + 0 and 1 + N. Equation ( 2 . 1 5 )  
then gives 

k i  

( R ~ ) = N [ I + ~ u ( I ~  ~ - 1 ) l .  ( 3 . 5 )  

First thing to notice comparing equations (3.4) and (3 .5)  is that in the limit of N + 00 

the proportionality relationship between (S2) and (R2)  is still valid up to first order in U ,  

in contrast to the classical perturbation results, equations (1 .3a) ,  (1 .3b) .  In the 
evaluation of (S’) the N 3  In N term comes only from the intrasegmental diagram 

while the other diagrams contribute N 3  terms of less importance in the limit 

N + m .  These terms can only change the overall proportionality constants of the 
average quantities. This observation about the importance of the intrasegmental 
diagrams is also true for higher perturbation orders and we will use this fact to show that 
the proportionality relationship between (S2) and (R2)  holds for higher orders. Ano- 
ther useful observation comes out of the form of the U term. The contribution of the 
terms of lower order than In N, 13/12 for (S’) and 1 for (R’) (equations (3.4) and (3 .5)) ,  
is larger in the case of the mean radius of gyration (S2).  Therefore it is more difficult for 
(S’)  than for ( R 2 )  to reach its thermodynamic form at large N, where the In N term 
dominates over the less important constant terms. This is the analytical version of the 
result of enumeration techniques (Kumbar and Windwer 1971, Lax and Windwer 
1971), according to which the (S’) needs larger values of N in order to obtain its 
thermodynamic form. 

As we mentioned, the dominant contribution in the limit N + 0O comes from the 
intrasegmental diagrams only. Neglecting the minor contributions from the other 
diagrams, (S2)  can be obtained from an intrasegmental expression of the (I, k) segment 
similar to that found (Komas 1981) for the mean end-to-end square distance (R2) .  In 
this way we take up to second order that 

N - l  N 
(S’)=N-’  1 [ ( l - k ) + 2 u ( l - k ) l n  ( I - k ) + ( u e / 2 - 6 u 2 ) ( I - k )  ln2(I-k)]. 

k = l  l = k + l  

(3.6) 
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We convert the summations into integrations which can be performed in a straightfor- 
ward manner. The result up to second order in U and for large N is 

( S 2 )  = W2[(N3/6 )  + (2u In NN3/6) + ( u E / ~  - 6u2) ln2 NN3/6]. 

The corresponding expression for the average end-to-end square distance is 

(3.7) 

( R 2 )  = N[1+ 2u In N + ( u E / ~  - 6u2) ln2 NI. (3.8) 

Comparing equations (3.7) and (3.8) we see that the corresponding terms of the two 
expressions have the same proportionality ratio, revealing that ( S 2 )  is proportional to 
(R2) .  The interesting thing to notice is that this proportionality is valid regardless of the 
RG theory and the meaning of the exponent. Its successful proof is only based on the 
suitable choice of the small perturbation parameter E = 4 - d. 

If we now use the meaning of the fixed point in the neighbourhood of which the 
expansions (3.7) and (3.8) fit into exponentialfunctions, we find (Kosmas 1981) that U* 
the fixed point value of U can take the values U ”  = 0, e/16. These values of U* give, for 
the average quantities, the expressions (see equations (3.4) and (3.5)), 

( S 2 )  = (N/6) exp{2u*[ln N-(13/12)]}= e ~ p ( - 1 3 u * / 6 } N ~ + ~ ” *  /6  (3.9a) 

(3.9b) ( R ~ )  = N exp{2u*(ln N - 1)) = e x p { - 2 u * } ~ ’ + ~ ~ *  

and for their ratio 

( S 2 ) / ( R 2 )  = exp{-u*/6}/6. (3.10) 

The present analysis shows that the exponents v and v’ defined in 81 and charac- 
terising the square averages (R’) and ( S 2 )  are identical, v = v ’  = (1/2) + U*, and 
estimates the universal ratio ( S 2 ) / ( R 2 )  = exp{-~/96}/6 for the non-ideal case. This 
ratio depends only on the dimensionality of the system and takes smaller values for 
smaller dimensionalities, in general agreement with previous results (Wall and Erpen- 
beck 1959). The quantitative outcomes of equations (3.9) and (3.10) are only valid in 
the limit E + 0, and comparison with the results of other techniques for lower dimen- 
sionalities is unreliable. The extrapolation of results of first order in E to lower 
dimensionalities, with the use of large values of E underestimates certain quantities. For 
example, the value of the critical exponent v4-E = (1/2) + ( ~ / 8 )  for E = 1 , 2 , 3  becomes 
v3 = 0.563, v2 = 0.625 and v l  = 0.688, while the more correct values for the exponents 
coming from interdimensional analysis (Kosmas and Freed 1978) are: v3 = 0.571, 
v2 = 0.667 and v1 = 0.800. Analogous things happen with the exponent ~ / 9 6  of the 
universal constant ( S 2 ) / ( R 2 )  = exp(-~/96)/6.  If we make the simple extrapolation to 
d = 3 , 2  and 1 by taking E to be 1 , 2  and 3 respectively the quantity ~ / 9 6  takes 
underestimated values. As a consequence the ratio (S’)/(R’) = exp{-~/96}/6 takes 
larger values ( S 2 ) / ( R 2 )  = 0.165 E = 1, ( S 2 ) / ( R 2 )  = 0.163 E = 2, than those generally 
found (Lax et a1 1978) from lattice enumeration techniques (S2)/(R2)-0.155 d = 3, 
( S 2 ) / ( R 2 )  = 0.140 d = 2. 

4. Conclusion 

We have worked close to the critical dimensionality d = 4 and we have shown that a 
proportionality relationship exists between the mean radius of gyration and the mean 
end-to-end square distance of a non-ideal polymer coil in the limit of large molecular 
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weights. This result is independent from the RG theoretical frame and the meaning of 
the critical exponent. We have also found the intrachain mean-square distance 
between any two beads of the chain. The condition of ideal behaviour of a portion of 
the chain does depend on the position of the segment, contrary to the blob model which 
accepts that suitable segments (blobs) behave ideally regardless of their chain position. 
Finally, using the idea of the fixed point, we have calculated the universal ratio 
( S 2 ) / ( R 2 )  in the limit E = 4 - d + 0. 
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